Started working on hw1 of probability theory
This commit is contained in:
parent
43ad75c338
commit
188a23495a
3 changed files with 104 additions and 1 deletions
43
probability-theory/hw/hw-template.typ
Normal file
43
probability-theory/hw/hw-template.typ
Normal file
|
@ -0,0 +1,43 @@
|
|||
#let hw(
|
||||
num: 0,
|
||||
doc
|
||||
) = [
|
||||
|
||||
#set document(
|
||||
title: "Егор_Капралов_1.5_" + str(num),
|
||||
author: "Капралов Егор"
|
||||
)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (left: 30mm, right: 15mm, top: 20mm, bottom: 20mm),
|
||||
numbering: "1"
|
||||
)
|
||||
|
||||
#set text(
|
||||
font: "Liberation Serif",
|
||||
size: 12pt,
|
||||
lang: "ru",
|
||||
region: "RU"
|
||||
)
|
||||
|
||||
#set par(
|
||||
justify: true,
|
||||
)
|
||||
|
||||
#show heading: it => {
|
||||
set text(size: 14pt, weight: "bold")
|
||||
block(above: 1.5em, below: 1.5em, it)
|
||||
}
|
||||
|
||||
#import "../../title.typ": itmo_title
|
||||
|
||||
#itmo_title(
|
||||
type: [Домашняя работа №#num],
|
||||
name: none,
|
||||
subject: [Теория вероятностей]
|
||||
)
|
||||
|
||||
#doc
|
||||
]
|
||||
|
60
probability-theory/hw/hw1/hw1.typ
Normal file
60
probability-theory/hw/hw1/hw1.typ
Normal file
|
@ -0,0 +1,60 @@
|
|||
#import "../hw-template.typ"
|
||||
#import hw-template: *
|
||||
|
||||
#show: doc => hw(
|
||||
num: 1,
|
||||
doc
|
||||
)
|
||||
|
||||
#let ol(text) = $overline(text)$
|
||||
|
||||
#outline()
|
||||
#pagebreak()
|
||||
|
||||
= Задание 1.8
|
||||
|
||||
Упростить выражение $A = (B+C)(B+ol(C))(ol(B)+C)$
|
||||
|
||||
$ A = (B+C)(B+ol(C))(ol(B)+C) = B(ol(B)+C) = B C $
|
||||
|
||||
*Ответ*: $B C$
|
||||
|
||||
= Задание 1.11
|
||||
|
||||
Доказать, что $ol(A)B+A ol(B)+ol(A B)=ol(A B)$
|
||||
|
||||
$ ol(A)B+A ol(B)+ol(A B) &= ol(A)B+A ol(B)+ol(A)+ol(B) = ol(A)(B+U)+ol(B)(A+U) \
|
||||
= ol(A) + ol(B) = ol(A B) $
|
||||
|
||||
= Задание 1.12
|
||||
|
||||
Доказать эквивалентность и справедливость следующих двух равенств:
|
||||
|
||||
$ ol(sum^n_(k=1) A_k) = product^n_(k=1) ol(A_k) #h(5em) sum^n_(k=1) ol(A_k) = ol(product^n_(k=1) A_k) $
|
||||
|
||||
|
||||
|
||||
= Задание 1.14
|
||||
|
||||
Доказать, что события $A, ol(A)B$ и $ol(A+B)$ образуют полную группу.
|
||||
|
||||
$ A + ol(A)B + ol(A+B) = A + ol(A)B + ol(A) thin ol(B) = $
|
||||
|
||||
= Задание 1.15
|
||||
|
||||
|
||||
|
||||
= Задание 2.8
|
||||
|
||||
|
||||
|
||||
= Задание 2.5
|
||||
|
||||
|
||||
|
||||
= Задание 2.7
|
||||
|
||||
|
||||
|
||||
= Задание 2.10
|
||||
|
|
@ -32,7 +32,7 @@
|
|||
|
||||
#type
|
||||
|
||||
"#name"
|
||||
#if name != none { ["#name"] }
|
||||
|
||||
#[
|
||||
#set text(size: 11pt)
|
||||
|
|
Loading…
Reference in a new issue