typst-itmo/probability-theory/hw/hw2/hw2.typ
2024-10-04 02:30:25 +03:00

89 lines
8.9 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#import "../hw-template.typ"
#import hw-template: *
#import "../../../helpers.typ"
#import helpers: *
#show: doc => hw(
num: 2,
doc
)
#set enum(numbering: ru_alph(pattern: "а)"))
#let ol(text) = $overline(text)$
#outline()
#pagebreak()
= Задание 2.18
В зале насчитывающем $n+k$ мест, случайным образом занимают места $n$ человек. Определить вероятность того, что будут заняты определенные $m <= n$ мест.
Число возможных способов рассадки $n$ человек на $n+k$ мест равняется $N = C^n_(n+k)$. Число возможных способов рассадки $n-m$ человек на $n+k-m$ ненужных мест равняется $M = C^(n-m)_(n+k-m)$ - это и будут благоприятствующие случаи. Вычислим вероятность:
$ p = M/N = C^(n-m)_(n+k-m)/C^n_(n+k) $
*Ответ*: $p = C^(n-m)_(n+k-m)/C^n_(n+k)$
= Задание 2.19
Из колоды карт (52 карты) наудачу извлекаются три карты. Найти вероятность того, что это будет тройка, семерка и туз.
Число возможных способов достать 3 карты из колоды размером 52 карты $n = C^3_52$. Число возможных способов достать карту определенного ранга, учитывая, что каждый ранг имеет 4 карты разной масти - $a = C^1_4$. Число возможных способов достать 3 карты трёх определенных рангов - $m = a dot a dot a = C^1_4 C^1_4 C^1_4$ - это и будут благоприятствующие случаи. Вычислим вероятность:
$ p = m/n = (C^1_4 C^1_4 C^1_4)/C^3_52 = 64/22100 = 16/5525 approx 0.0029 $
*Ответ*: $p = 16/5525$
= Задание 2.20
Из колоды в 36 карт наудачу извлекаются три карты. Определить вероятность того, что сумма очков этих карт равна 21, если валет составляет два очка, дама - три, король - четыре, туз - одиннадцать, а остальные карты - соответсвенно шесть, семь, восемь, девять и десять очков.
Число возможных способов достать 3 карты из колоды размером 36 карт $n = C^3_36 = 7140$. Подсчитаем число возможных способов достать 3 карты $m$, при которых сумма их очков будет равна 21.
Рассмотрим комбинации, при которых мы будем иметь 3 одинаковых по рангу карты. Такая комбинация одна - $(7,7,7)$. Так как карта каждого ранга имеет 4 копии разных мастей, то число способов достать 3 семёрки $m_1 = C^3_4 = 4$.
Рассмотрим комбинации, при которых мы будем иметь 2 одинаковые по рангу карты. Всего таких комбинаций 2 - ${(9,9,3), (6,6,9)}$. Аналогично подсчитаем число способов достать перечисленные комбинации $m_2 = 2 dot C^1_4 dot C^2_4 = 2 dot 4 dot 6 = 48$.
#pagebreak()
Рассмотрим комбинации, при которых мы не будем иметь одинаковых по рангу карт. Всего таких комбинаций 8 - ${(2,8,11), (2,9,10), (3,7,11), (3,8,10), (4,6,11), (4,7,10), (4,8,9), (6,7,8)}$. Аналогично подсчитаем число способов достать перечисленные комбинации $m_3 = 8 dot C^1_4 dot C^1_4 dot C^1_4 = 8 dot 4^3 = 512$.
Общее число возможных способов собрать 21 очко $m = m_1 + m_2 + m_3 = 4 + 48 + 512 = 564$. Подсчитаем вероятность $p$:
$ p = m/n = 564/7140 = 47/595 approx 0.079 $
*Ответ*: $p = 47/595$
= Задание 2.21
Имеются пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. определить вероятность того, что:
+ Хотя бы два из этих билетов имеют одинаковую стоимость
+ Все три билета стоят семь рублей
а) Число возможных способов взять наугад 3 билета из 10 билетов $n = C^3_10 = 120$. Подсчитать количество способов, при которых хотя бы 2 билета будут иметь одиаковую стоимость будет проблематично, поэтому для начала вычислим вероятность обратного события $q$ - ни один билет не имеет одинаковую стоимость. Число возможных способов достать 3 разных по стоимости билета $m = C^1_5 dot C^1_3 dot C^1_2 = 5 dot 3 dot 2 = 30$. Вычислим вероятность обратного события $q$, после чего подсчитаем вероятность исходного события $p$:
$ q = m/n = 30/120 = 1/4 $
$ p = 1 - q = 1 - 1/4 = 3/4 = 0.75 $
б) Подсчитаем число возможных способов $m$ достать 3 билета общей ценой 7 рублей. Комбинации билетов, которые будут иметь сумму 7 рублей - ${(5,1,1), (3,3,1)}$. Число возможных способов достать 3 билета с ценами $(5,1,1)$ равняется $m_1 = C^1_2 dot C^2_5 = 2 dot 10 = 20$. Число возможных способов достать 3 билета с ценами $(3,3,1)$ равняется $m_2 = C^2_3 dot C^1_5 = 3 dot 5 = 15$. Общее число возможных способов взять 3 билета с общей суммой 7 рублей $m = m_1 + m_2 = 20 + 15 = 35$. Подсчитаем вероятность $p$:
$ p = m/n = 35/120 = 7/24 approx 0.292 $
*Ответ*:
+ $p = 0.75$
+ $p = 7/24$
#pagebreak()
= Задание 2.22
Очередь в кассу, где производится продажа билетов по 5 коп., состоит из $2n$ человек. Какова вероятность того, что ни одному из покупателей не придется ждать сдачи, если перед продажей билета первому покупателю из очереди у кассира было только $2m$ пятоков, а получение платы за каждый билет равновозможно как пятаком так и гривенником?
Очевидно, что если $m >= n$, то пятаков будет всегда больше, чем покупателей, кассир сможет дать сдачу каждому человеку из очереди, следовательно $p = 1$.
Рассмотрим случаи, когда $m < n$. Поскольку вероятность оплаты пятаком и гривенником равнозначны, то число возможных способов расставить $2n$ человек с пятаками и гривенниками в очереди $N = 2^(2n)$. Пусть $k$ - количество пятаков у покупателей. Минимальное количество пятаков, при котором возможна ситуация, где ни один покупатель не ждет своей сдачи, равнаяется $(2n - 2m)/2 = n - m$. Максимальное количество пятаков, при котором такая ситуация возможна равняется $m - 1$.
Рассмотрим число возможных способов $N_k$ расстановки человек в очереди с пятаками и гривенниками так, чтобы никто не ждал сдачи. В каждом из случаев необходимо, чтобы $k$ покупателей с пятаками были не дальше $2m$ от кассира, и чтобы расстояние между покупателями с пятаками было не больше $2m$ человек. При $k$ равным $n-m$ число способов.
*Ответ*: $p = 1/2^(2n) dot sum^(n+m)_(k=n-m) C^k_(2n)$