shad-go/iprange/y.go

542 lines
10 KiB
Go

//go:build !solution
package iprange
import (
"encoding/binary"
"fmt"
"net"
)
type AddressRangeList []AddressRange
type AddressRange struct {
Min net.IP
Max net.IP
}
type octetRange struct {
min byte
max byte
}
type ipSymType struct {
yys int
num byte
octRange octetRange
addrRange AddressRange
result AddressRangeList
}
const num = 57346
var ipToknames = [...]string{
"$end",
"error",
"$unk",
"num",
"','",
"' '",
"'/'",
"'.'",
"'*'",
"'-'",
}
var ipStatenames = [...]string{}
// nolint
const ipEofCode = 1
const ipErrCode = 2
const ipInitialStackSize = 16
// ParseList takes a list of target specifications and returns a list of ranges,
// even if the list contains a single element.
func ParseList(in string) (AddressRangeList, error) {
lex := &ipLex{line: []byte(in)}
errCode := ipParse(lex)
if errCode != 0 || lex.err != nil {
return nil, fmt.Errorf("could not parse target: %w", lex.err)
}
return lex.output, nil
}
// Parse takes a single target specification and returns a range. It effectively calls ParseList
// and returns the first result
func Parse(in string) (*AddressRange, error) {
l, err := ParseList(in)
if err != nil {
return nil, err
}
return &l[0], nil
}
var ipExca = [...]int{
-1, 1,
1, -1,
-2, 0,
}
const ipNprod = 12
const ipPrivate = 57344
var ipTokenNames []string
var ipStates []string
const ipLast = 22
var ipAct = [...]int{
4, 5, 12, 20, 2, 10, 6, 18, 11, 14,
9, 17, 16, 13, 15, 8, 1, 7, 3, 19,
0, 21,
}
var ipPact = [...]int{
-3, 5, -1000, -2, 0, -8, -1000, -1000, -3, 3,
10, -3, 7, -1000, -1000, -1000, -1, -1000, -3, -5,
-3, -1000,
}
var ipPgo = [...]int{
0, 18, 4, 0, 17, 16, 15,
}
var ipR1 = [...]int{
0, 5, 5, 6, 6, 2, 2, 1, 3, 3,
3, 4,
}
var ipR2 = [...]int{
0, 1, 3, 1, 2, 3, 1, 7, 1, 1,
1, 3,
}
var ipChk = [...]int{
-1000, -5, -2, -1, -3, 4, 9, -4, -6, 5,
7, 8, 10, -2, 6, 4, -3, 4, 8, -3,
8, -3,
}
var ipDef = [...]int{
0, -2, 1, 6, 0, 8, 9, 10, 0, 3,
0, 0, 0, 2, 4, 5, 0, 11, 0, 0,
0, 7,
}
var ipTok1 = [...]int{
1, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 6, 3, 3, 3, 3, 3, 3, 3,
3, 3, 9, 3, 5, 10, 8, 7,
}
var ipTok2 = [...]int{
2, 3, 4,
}
var ipTok3 = [...]int{
0,
}
var ipErrorMessages = [...]struct {
state int
token int
msg string
}{}
/* parser for yacc output */
var (
ipDebug = 0
ipErrorVerbose = false
)
type ipLexer interface {
Lex(lval *ipSymType) int
Error(s string)
}
type ipParser interface {
Parse(ipLexer) int
Lookahead() int
}
type ipParserImpl struct {
lval ipSymType
stack [ipInitialStackSize]ipSymType
char int
}
// nolint
func (p *ipParserImpl) Lookahead() int {
return p.char
}
func ipNewParser() ipParser {
return &ipParserImpl{}
}
const ipFlag = -1000
func ipTokname(c int) string {
if c >= 1 && c-1 < len(ipToknames) {
if ipToknames[c-1] != "" {
return ipToknames[c-1]
}
}
return fmt.Sprintf("tok-%v", c)
}
func ipStatname(s int) string {
if s >= 0 && s < len(ipStatenames) {
if ipStatenames[s] != "" {
return ipStatenames[s]
}
}
return fmt.Sprintf("state-%v", s)
}
func ipErrorMessage(state, lookAhead int) string {
const TOKSTART = 4
if !ipErrorVerbose {
return "syntax error"
}
for _, e := range ipErrorMessages {
if e.state == state && e.token == lookAhead {
return "syntax error: " + e.msg
}
}
res := "syntax error: unexpected " + ipTokname(lookAhead)
// To match Bison, suggest at most four expected tokens.
expected := make([]int, 0, 4)
// Look for shiftable tokens.
base := ipPact[state]
for tok := TOKSTART; tok-1 < len(ipToknames); tok++ {
if n := base + tok; n >= 0 && n < ipLast && ipChk[ipAct[n]] == tok {
if len(expected) == cap(expected) {
return res
}
expected = append(expected, tok)
}
}
if ipDef[state] == -2 {
i := 0
for ipExca[i] != -1 || ipExca[i+1] != state {
i += 2
}
// Look for tokens that we accept or reduce.
for i += 2; ipExca[i] >= 0; i += 2 {
tok := ipExca[i]
if tok < TOKSTART || ipExca[i+1] == 0 {
continue
}
if len(expected) == cap(expected) {
return res
}
expected = append(expected, tok)
}
// If the default action is to accept or reduce, give up.
if ipExca[i+1] != 0 {
return res
}
}
for i, tok := range expected {
if i == 0 {
res += ", expecting "
} else {
res += " or "
}
res += ipTokname(tok)
}
return res
}
func iplex1(lex ipLexer, lval *ipSymType) (char, token int) {
token = 0
char = lex.Lex(lval)
if char <= 0 {
token = ipTok1[0]
goto out
}
if char < len(ipTok1) {
token = ipTok1[char]
goto out
}
if char >= ipPrivate {
if char < ipPrivate+len(ipTok2) {
token = ipTok2[char-ipPrivate]
goto out
}
}
for i := 0; i < len(ipTok3); i += 2 {
token = ipTok3[i+0]
if token == char {
token = ipTok3[i+1]
goto out
}
}
out:
if token == 0 {
token = ipTok2[1] /* unknown char */
}
if ipDebug >= 3 {
fmt.Printf("lex %s(%d)\n", ipTokname(token), uint(char))
}
return char, token
}
func ipParse(iplex ipLexer) int {
return ipNewParser().Parse(iplex)
}
func (iprcvr *ipParserImpl) Parse(iplex ipLexer) int {
var ipn int
var ipVAL ipSymType
var ipDollar []ipSymType
_ = ipDollar // silence set and not used
ipS := iprcvr.stack[:]
Nerrs := 0 /* number of errors */
Errflag := 0 /* error recovery flag */
ipstate := 0
iprcvr.char = -1
iptoken := -1 // iprcvr.char translated into internal numbering
defer func() {
// Make sure we report no lookahead when not parsing.
ipstate = -1
iprcvr.char = -1
iptoken = -1
}()
ipp := -1
goto ipstack
ret0:
return 0
ret1:
return 1
ipstack:
/* put a state and value onto the stack */
if ipDebug >= 4 {
fmt.Printf("char %v in %v\n", ipTokname(iptoken), ipStatname(ipstate))
}
ipp++
if ipp >= len(ipS) {
nyys := make([]ipSymType, len(ipS)*2)
copy(nyys, ipS)
ipS = nyys
}
ipS[ipp] = ipVAL
ipS[ipp].yys = ipstate
ipnewstate:
ipn = ipPact[ipstate]
if ipn <= ipFlag {
goto ipdefault /* simple state */
}
if iprcvr.char < 0 {
iprcvr.char, iptoken = iplex1(iplex, &iprcvr.lval)
}
ipn += iptoken
if ipn < 0 || ipn >= ipLast {
goto ipdefault
}
ipn = ipAct[ipn]
if ipChk[ipn] == iptoken { /* valid shift */
iprcvr.char = -1
iptoken = -1
ipVAL = iprcvr.lval
ipstate = ipn
if Errflag > 0 {
Errflag--
}
goto ipstack
}
ipdefault:
/* default state action */
ipn = ipDef[ipstate]
if ipn == -2 {
if iprcvr.char < 0 {
iprcvr.char, iptoken = iplex1(iplex, &iprcvr.lval)
}
/* look through exception table */
xi := 0
for {
if ipExca[xi+0] == -1 && ipExca[xi+1] == ipstate {
break
}
xi += 2
}
for xi += 2; ; xi += 2 {
ipn = ipExca[xi+0]
if ipn < 0 || ipn == iptoken {
break
}
}
ipn = ipExca[xi+1]
if ipn < 0 {
goto ret0
}
}
if ipn == 0 {
/* error ... attempt to resume parsing */
switch Errflag {
case 0: /* brand new error */
iplex.Error(ipErrorMessage(ipstate, iptoken))
Nerrs++
if ipDebug >= 1 {
fmt.Printf("%s", ipStatname(ipstate))
fmt.Printf(" saw %s\n", ipTokname(iptoken))
}
fallthrough
case 1, 2: /* incompletely recovered error ... try again */
Errflag = 3
/* find a state where "error" is a legal shift action */
for ipp >= 0 {
ipn = ipPact[ipS[ipp].yys] + ipErrCode
if ipn >= 0 && ipn < ipLast {
ipstate = ipAct[ipn] /* simulate a shift of "error" */
if ipChk[ipstate] == ipErrCode {
goto ipstack
}
}
/* the current p has no shift on "error", pop stack */
if ipDebug >= 2 {
fmt.Printf("error recovery pops state %d\n", ipS[ipp].yys)
}
ipp--
}
/* there is no state on the stack with an error shift ... abort */
goto ret1
case 3: /* no shift yet; clobber input char */
if ipDebug >= 2 {
fmt.Printf("error recovery discards %s\n", ipTokname(iptoken))
}
if iptoken == ipEofCode {
goto ret1
}
iprcvr.char = -1
iptoken = -1
goto ipnewstate /* try again in the same state */
}
}
/* reduction by production ipn */
if ipDebug >= 2 {
fmt.Printf("reduce %v in:\n\t%v\n", ipn, ipStatname(ipstate))
}
ipnt := ipn
ippt := ipp
_ = ippt // guard against "declared and not used"
ipp -= ipR2[ipn]
// ipp is now the index of $0. Perform the default action. Iff the
// reduced production is ε, $1 is possibly out of range.
if ipp+1 >= len(ipS) {
nyys := make([]ipSymType, len(ipS)*2)
copy(nyys, ipS)
ipS = nyys
}
ipVAL = ipS[ipp+1]
/* consult goto table to find next state */
ipn = ipR1[ipn]
ipg := ipPgo[ipn]
ipj := ipg + ipS[ipp].yys + 1
if ipj >= ipLast {
ipstate = ipAct[ipg]
} else {
ipstate = ipAct[ipj]
if ipChk[ipstate] != -ipn {
ipstate = ipAct[ipg]
}
}
// dummy call; replaced with literal code
switch ipnt {
case 1:
ipDollar = ipS[ippt-1 : ippt+1]
{
ipVAL.result = append(ipVAL.result, ipDollar[1].addrRange)
iplex.(*ipLex).output = ipVAL.result
}
case 2:
ipDollar = ipS[ippt-3 : ippt+1]
{
ipVAL.result = append(ipDollar[1].result, ipDollar[3].addrRange)
iplex.(*ipLex).output = ipVAL.result
}
case 5:
ipDollar = ipS[ippt-3 : ippt+1]
{
mask := net.CIDRMask(int(ipDollar[3].num), 32)
min := ipDollar[1].addrRange.Min.Mask(mask)
maxInt := binary.BigEndian.Uint32([]byte(min)) +
0xffffffff -
binary.BigEndian.Uint32([]byte(mask))
maxBytes := make([]byte, 4)
binary.BigEndian.PutUint32(maxBytes, maxInt)
maxBytes = maxBytes[len(maxBytes)-4:]
max := net.IP(maxBytes)
ipVAL.addrRange = AddressRange{
Min: min.To4(),
Max: max.To4(),
}
}
case 6:
ipDollar = ipS[ippt-1 : ippt+1]
{
ipVAL.addrRange = ipDollar[1].addrRange
}
case 7:
ipDollar = ipS[ippt-7 : ippt+1]
{
ipVAL.addrRange = AddressRange{
Min: net.IPv4(ipDollar[1].octRange.min, ipDollar[3].octRange.min, ipDollar[5].octRange.min, ipDollar[7].octRange.min).To4(),
Max: net.IPv4(ipDollar[1].octRange.max, ipDollar[3].octRange.max, ipDollar[5].octRange.max, ipDollar[7].octRange.max).To4(),
}
}
case 8:
ipDollar = ipS[ippt-1 : ippt+1]
{
ipVAL.octRange = octetRange{ipDollar[1].num, ipDollar[1].num}
}
case 9:
// nolint
ipDollar = ipS[ippt-1 : ippt+1]
{
ipVAL.octRange = octetRange{0, 255}
}
case 10:
ipDollar = ipS[ippt-1 : ippt+1]
{
ipVAL.octRange = ipDollar[1].octRange
}
case 11:
ipDollar = ipS[ippt-3 : ippt+1]
{
ipVAL.octRange = octetRange{ipDollar[1].num, ipDollar[3].num}
}
}
goto ipstack /* stack new state and value */
}