//go:build !solution package iprange import ( "encoding/binary" "fmt" "net" ) type AddressRangeList []AddressRange type AddressRange struct { Min net.IP Max net.IP } type octetRange struct { min byte max byte } type ipSymType struct { yys int num byte octRange octetRange addrRange AddressRange result AddressRangeList } const num = 57346 var ipToknames = [...]string{ "$end", "error", "$unk", "num", "','", "' '", "'/'", "'.'", "'*'", "'-'", } var ipStatenames = [...]string{} const ipEofCode = 1 const ipErrCode = 2 const ipInitialStackSize = 16 // ParseList takes a list of target specifications and returns a list of ranges, // even if the list contains a single element. func ParseList(in string) (AddressRangeList, error) { lex := &ipLex{line: []byte(in)} errCode := ipParse(lex) if errCode != 0 || lex.err != nil { return nil, fmt.Errorf("could not parse target: %w", lex.err) } return lex.output, nil } // Parse takes a single target specification and returns a range. It effectively calls ParseList // and returns the first result func Parse(in string) (*AddressRange, error) { l, err := ParseList(in) if err != nil { return nil, err } return &l[0], nil } var ipExca = [...]int{ -1, 1, 1, -1, -2, 0, } const ipNprod = 12 const ipPrivate = 57344 var ipTokenNames []string var ipStates []string const ipLast = 22 var ipAct = [...]int{ 4, 5, 12, 20, 2, 10, 6, 18, 11, 14, 9, 17, 16, 13, 15, 8, 1, 7, 3, 19, 0, 21, } var ipPact = [...]int{ -3, 5, -1000, -2, 0, -8, -1000, -1000, -3, 3, 10, -3, 7, -1000, -1000, -1000, -1, -1000, -3, -5, -3, -1000, } var ipPgo = [...]int{ 0, 18, 4, 0, 17, 16, 15, } var ipR1 = [...]int{ 0, 5, 5, 6, 6, 2, 2, 1, 3, 3, 3, 4, } var ipR2 = [...]int{ 0, 1, 3, 1, 2, 3, 1, 7, 1, 1, 1, 3, } var ipChk = [...]int{ -1000, -5, -2, -1, -3, 4, 9, -4, -6, 5, 7, 8, 10, -2, 6, 4, -3, 4, 8, -3, 8, -3, } var ipDef = [...]int{ 0, -2, 1, 6, 0, 8, 9, 10, 0, 3, 0, 0, 0, 2, 4, 5, 0, 11, 0, 0, 0, 7, } var ipTok1 = [...]int{ 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 3, 5, 10, 8, 7, } var ipTok2 = [...]int{ 2, 3, 4, } var ipTok3 = [...]int{ 0, } var ipErrorMessages = [...]struct { state int token int msg string }{} /* parser for yacc output */ var ( ipDebug = 0 ipErrorVerbose = false ) type ipLexer interface { Lex(lval *ipSymType) int Error(s string) } type ipParser interface { Parse(ipLexer) int Lookahead() int } type ipParserImpl struct { lval ipSymType stack [ipInitialStackSize]ipSymType char int } func (p *ipParserImpl) Lookahead() int { return p.char } func ipNewParser() ipParser { return &ipParserImpl{} } const ipFlag = -1000 func ipTokname(c int) string { if c >= 1 && c-1 < len(ipToknames) { if ipToknames[c-1] != "" { return ipToknames[c-1] } } return fmt.Sprintf("tok-%v", c) } func ipStatname(s int) string { if s >= 0 && s < len(ipStatenames) { if ipStatenames[s] != "" { return ipStatenames[s] } } return fmt.Sprintf("state-%v", s) } func ipErrorMessage(state, lookAhead int) string { const TOKSTART = 4 if !ipErrorVerbose { return "syntax error" } for _, e := range ipErrorMessages { if e.state == state && e.token == lookAhead { return "syntax error: " + e.msg } } res := "syntax error: unexpected " + ipTokname(lookAhead) // To match Bison, suggest at most four expected tokens. expected := make([]int, 0, 4) // Look for shiftable tokens. base := ipPact[state] for tok := TOKSTART; tok-1 < len(ipToknames); tok++ { if n := base + tok; n >= 0 && n < ipLast && ipChk[ipAct[n]] == tok { if len(expected) == cap(expected) { return res } expected = append(expected, tok) } } if ipDef[state] == -2 { i := 0 for ipExca[i] != -1 || ipExca[i+1] != state { i += 2 } // Look for tokens that we accept or reduce. for i += 2; ipExca[i] >= 0; i += 2 { tok := ipExca[i] if tok < TOKSTART || ipExca[i+1] == 0 { continue } if len(expected) == cap(expected) { return res } expected = append(expected, tok) } // If the default action is to accept or reduce, give up. if ipExca[i+1] != 0 { return res } } for i, tok := range expected { if i == 0 { res += ", expecting " } else { res += " or " } res += ipTokname(tok) } return res } func iplex1(lex ipLexer, lval *ipSymType) (char, token int) { token = 0 char = lex.Lex(lval) if char <= 0 { token = ipTok1[0] goto out } if char < len(ipTok1) { token = ipTok1[char] goto out } if char >= ipPrivate { if char < ipPrivate+len(ipTok2) { token = ipTok2[char-ipPrivate] goto out } } for i := 0; i < len(ipTok3); i += 2 { token = ipTok3[i+0] if token == char { token = ipTok3[i+1] goto out } } out: if token == 0 { token = ipTok2[1] /* unknown char */ } if ipDebug >= 3 { fmt.Printf("lex %s(%d)\n", ipTokname(token), uint(char)) } return char, token } func ipParse(iplex ipLexer) int { return ipNewParser().Parse(iplex) } func (iprcvr *ipParserImpl) Parse(iplex ipLexer) int { var ipn int var ipVAL ipSymType var ipDollar []ipSymType _ = ipDollar // silence set and not used ipS := iprcvr.stack[:] Nerrs := 0 /* number of errors */ Errflag := 0 /* error recovery flag */ ipstate := 0 iprcvr.char = -1 iptoken := -1 // iprcvr.char translated into internal numbering defer func() { // Make sure we report no lookahead when not parsing. ipstate = -1 iprcvr.char = -1 iptoken = -1 }() ipp := -1 goto ipstack ret0: return 0 ret1: return 1 ipstack: /* put a state and value onto the stack */ if ipDebug >= 4 { fmt.Printf("char %v in %v\n", ipTokname(iptoken), ipStatname(ipstate)) } ipp++ if ipp >= len(ipS) { nyys := make([]ipSymType, len(ipS)*2) copy(nyys, ipS) ipS = nyys } ipS[ipp] = ipVAL ipS[ipp].yys = ipstate ipnewstate: ipn = ipPact[ipstate] if ipn <= ipFlag { goto ipdefault /* simple state */ } if iprcvr.char < 0 { iprcvr.char, iptoken = iplex1(iplex, &iprcvr.lval) } ipn += iptoken if ipn < 0 || ipn >= ipLast { goto ipdefault } ipn = ipAct[ipn] if ipChk[ipn] == iptoken { /* valid shift */ iprcvr.char = -1 iptoken = -1 ipVAL = iprcvr.lval ipstate = ipn if Errflag > 0 { Errflag-- } goto ipstack } ipdefault: /* default state action */ ipn = ipDef[ipstate] if ipn == -2 { if iprcvr.char < 0 { iprcvr.char, iptoken = iplex1(iplex, &iprcvr.lval) } /* look through exception table */ xi := 0 for { if ipExca[xi+0] == -1 && ipExca[xi+1] == ipstate { break } xi += 2 } for xi += 2; ; xi += 2 { ipn = ipExca[xi+0] if ipn < 0 || ipn == iptoken { break } } ipn = ipExca[xi+1] if ipn < 0 { goto ret0 } } if ipn == 0 { /* error ... attempt to resume parsing */ switch Errflag { case 0: /* brand new error */ iplex.Error(ipErrorMessage(ipstate, iptoken)) Nerrs++ if ipDebug >= 1 { fmt.Printf("%s", ipStatname(ipstate)) fmt.Printf(" saw %s\n", ipTokname(iptoken)) } fallthrough case 1, 2: /* incompletely recovered error ... try again */ Errflag = 3 /* find a state where "error" is a legal shift action */ for ipp >= 0 { ipn = ipPact[ipS[ipp].yys] + ipErrCode if ipn >= 0 && ipn < ipLast { ipstate = ipAct[ipn] /* simulate a shift of "error" */ if ipChk[ipstate] == ipErrCode { goto ipstack } } /* the current p has no shift on "error", pop stack */ if ipDebug >= 2 { fmt.Printf("error recovery pops state %d\n", ipS[ipp].yys) } ipp-- } /* there is no state on the stack with an error shift ... abort */ goto ret1 case 3: /* no shift yet; clobber input char */ if ipDebug >= 2 { fmt.Printf("error recovery discards %s\n", ipTokname(iptoken)) } if iptoken == ipEofCode { goto ret1 } iprcvr.char = -1 iptoken = -1 goto ipnewstate /* try again in the same state */ } } /* reduction by production ipn */ if ipDebug >= 2 { fmt.Printf("reduce %v in:\n\t%v\n", ipn, ipStatname(ipstate)) } ipnt := ipn ippt := ipp _ = ippt // guard against "declared and not used" ipp -= ipR2[ipn] // ipp is now the index of $0. Perform the default action. Iff the // reduced production is ε, $1 is possibly out of range. if ipp+1 >= len(ipS) { nyys := make([]ipSymType, len(ipS)*2) copy(nyys, ipS) ipS = nyys } ipVAL = ipS[ipp+1] /* consult goto table to find next state */ ipn = ipR1[ipn] ipg := ipPgo[ipn] ipj := ipg + ipS[ipp].yys + 1 if ipj >= ipLast { ipstate = ipAct[ipg] } else { ipstate = ipAct[ipj] if ipChk[ipstate] != -ipn { ipstate = ipAct[ipg] } } // dummy call; replaced with literal code switch ipnt { case 1: ipDollar = ipS[ippt-1 : ippt+1] { ipVAL.result = append(ipVAL.result, ipDollar[1].addrRange) iplex.(*ipLex).output = ipVAL.result } case 2: ipDollar = ipS[ippt-3 : ippt+1] { ipVAL.result = append(ipDollar[1].result, ipDollar[3].addrRange) iplex.(*ipLex).output = ipVAL.result } case 5: ipDollar = ipS[ippt-3 : ippt+1] { mask := net.CIDRMask(int(ipDollar[3].num), 32) min := ipDollar[1].addrRange.Min.Mask(mask) maxInt := binary.BigEndian.Uint32([]byte(min)) + 0xffffffff - binary.BigEndian.Uint32([]byte(mask)) maxBytes := make([]byte, 4) binary.BigEndian.PutUint32(maxBytes, maxInt) maxBytes = maxBytes[len(maxBytes)-4:] max := net.IP(maxBytes) ipVAL.addrRange = AddressRange{ Min: min.To4(), Max: max.To4(), } } case 6: ipDollar = ipS[ippt-1 : ippt+1] { ipVAL.addrRange = ipDollar[1].addrRange } case 7: ipDollar = ipS[ippt-7 : ippt+1] { ipVAL.addrRange = AddressRange{ Min: net.IPv4(ipDollar[1].octRange.min, ipDollar[3].octRange.min, ipDollar[5].octRange.min, ipDollar[7].octRange.min).To4(), Max: net.IPv4(ipDollar[1].octRange.max, ipDollar[3].octRange.max, ipDollar[5].octRange.max, ipDollar[7].octRange.max).To4(), } } case 8: ipDollar = ipS[ippt-1 : ippt+1] { ipVAL.octRange = octetRange{ipDollar[1].num, ipDollar[1].num} } case 9: // nolint ipDollar = ipS[ippt-1 : ippt+1] { ipVAL.octRange = octetRange{0, 255} } case 10: ipDollar = ipS[ippt-1 : ippt+1] { ipVAL.octRange = ipDollar[1].octRange } case 11: ipDollar = ipS[ippt-3 : ippt+1] { ipVAL.octRange = octetRange{ipDollar[1].num, ipDollar[3].num} } } goto ipstack /* stack new state and value */ }