Merge branch 'update-generics-slides' into 'master'

[lectures] Update generics slides.

See merge request slon/shad-go-private!66
This commit is contained in:
verytable 2022-04-07 15:10:28 +00:00
commit a62fc07303
5 changed files with 237 additions and 89 deletions

View file

@ -3,25 +3,13 @@ generics
Арсений Балобанов
* Generics (draft)
* Generics
* New language features
- Mechanism to parameterize a type or function by types.
- Constraints mechanism to express requirements on type parameters.
- Type inference (optional)
* Parameter lists
An ordinary parameter list
(x, y aType, z anotherType)
A type parameter list
[P, Q aConstraint, R anotherConstraint]
- Convention: Type parameter names are capitalized
- Type parameters for functions and types
- Type sets
- Type inference
* Sorting in Go
@ -46,6 +34,18 @@ what we really want
func Sort[Elem ?](list []Elem)
* Parameter lists
An ordinary parameter list
(x, y aType, z anotherType)
A type parameter list
[P, Q aConstraint, R anotherConstraint]
- Convention: Type parameter names are capitalized
* Constraints
- A constraint specifies the requirements which a type argument must satisfy.
@ -78,28 +78,28 @@ User code
* Type-checking the Sort call: Instantiation
Sort[book] | (bookshelf)
What happens when we call Sort?
pass type argument
Sort[book](bookshelf)
- Substitution. Substitute book for elem
Sort[Elem interface{ Less(y Elem) bool }] | (list []Elem)
substitute book for elem
Sort[book interface{ Less(y book) bool }] | (list []book)
verify that book satisfies the book parameter constraint
- Verification. Verify that book satisfies the book parameter constraint
- Instantiate book-specific function
#Sort[book] | (list []book)
A generic function or type must be instantiated before it can be used.
* Type-checking a generic call
Instantiation (new)
- replace type parameters with type arguments in entire signature
- verify that each type argument satisfies its constraintThen, using the instantiated signature.
- verify that each type argument satisfies its constraint
Invocation (as usual)
@ -108,10 +108,10 @@ Invocation (as usual)
* Types can be generic, too
type Lesser[T any] interface{
Less(y T) bool}
Less(y T) bool
}
any stands for "no constraint"(same as "interface{}")
any stands for "no constraint" (same as "interface{}")
* Sort, decomposed
@ -121,38 +121,6 @@ any stands for "no constraint"(same as "interface{}")
func Sort[Elem Lesser[Elem]](list []Elem)
* Sort internals
func Sort[Elem interface{ Less(y Elem) bool }](list []Elem) {
...
var i, j int
...
if list[i].Less(List[j]) {...}
...
}
- type of list[i], list[j] is Elem
- Elem is NOT an interface type!
- A type parameter is a real type.It is not an interface type.
* Argument type inference
what we have
Sort[book](bookshelf)
what we want
Sort(bookshelf)
Type unification
bookshelf -> []book
Inference
func Sort[Elem ...]([]Elem) => Elem == book
* Problems
what we want
@ -167,42 +135,187 @@ what we could do
func (x myInt) Less(y myInt) bool { return x < y }
* Type lists
* min
A constraint interface may have a list of types (besides methods):
.play -edit min/basic/min.go /^func min/,/^}/
* Generic min
.play -edit min/basic/min.go /^func min/,/^}/
.play -edit min/generic/min.go /^func min/,/^}/
* Calling generic min
m := min[int](1, 2)
* Instantiation
fmin := min[float64] // non generic
m := fmin(2.71, 3.14)
* Generic type
type Tree[T interface{}] struct {
left, right *Tree[T]
data T
}
func (t *Tree[T]) Lookup(x T) *Tree[T]
var stringTree Tree[string]
- Methods cannot have it's own type parameters
* Type sets
func min(x, y float64) float64
- float64 defines a set of values x and y can have
func min[T constraints.Ordered](x, y T) T {
- constraints.Ordered defines a set of values T can have
* constaints.Ordered
// Ordered is a constraint that permits any ordered type: any type
// that supports the operators < <= >= >.
// If future releases of Go add new ordered types,
// this constraint will be modified to include them.
type Ordered interface {
Integer | Float | ~string
}
- The < operator is supported by every type in this subset
- ~T means with underlying type T
* constaints
type Signed interface {
~int | ~int8 | ~int16 | ~int32 | ~int64
}
type Unsigned interface {
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
}
type Integer interface {
Signed | Unsigned
}
type Float interface {
type float32, float64
~float32 | ~float64
}
// Sin computes sin(x) for x of type float32 or float64.
func Sin[T Float](x T) T
Satisfying a type list
An argument type satisfies a constraint with a type list if
- The argument type implements the methods of the constraint
- The argument type or its underlying type is found in the type list.
As usual, the satisfaction check happens after substitution.
* Generic min function
type Ordered interface {
type int, int8, int16, ..., uint, uint8, uint16, ...,
float32, float64, string
type Complex interface {
~complex64 | ~complex128
}
min internals
* Constaints & type sets
func min[T Ordered](x, y T) T {
if x < y {
return x
}
return y
[T aConstraint]
- aConstraint is an interface
- interface has a type set
- type set defines the types that are permissible
* Constaint literals
[S interface{~[]E}, E interface{}]
- interface{E} could be rewritten as E in a constraint
[S ~[]E, E interface{}]
- any is a new predeclared identifier — an alias for interface{} in a constraint
[S ~[]E, E any]
* Type inference
- Type intefence is complicated but usage is simple
- Programms that don't need type arguments today won't need them tomorrow
* Scale
type Point []uint32
func (p Point) String() string { return "" }
We'd like to write function scale and Println
func ScaleAndPrint(p Point) {
r := Scale(p, 2)
fmt.Println(r.String())
}
* Scale, first attempt
.play -edit scale/wrong/scale.go /^func Scale/,/^}/
* Scale, first attempt
.play -edit scale/wrong/scale.go /^func Scale/,/^}/
func ScaleAndPrint(p Point) {
r := Scale(p, 2)
fmt.Println(r.String())
}
- Compiler error: (type []uint32 has no field or method String)
* Scale, fixed
.play -edit scale/fixed/scale.go /^func Scale/,/^}/
* Scale, fixed
func Scale[S ~[]E, E constraints.Integer](s S, c E) S
vs
func Scale[E constraints.Integer](s []E, c E) []E
* Inference
func ScaleAndPrint(p Point) {
r := Scale(p, 2)
fmt.Println(r.String())
}
Why don't we need explicit type parameters?
r := Scale[Point, int32](p, 2)
* Inference
- argument type inference
- constraint type inference
* Argument type inference
func Scale[S ~[]E, E constraints.Integer](s S, c E) S
type Point []int32
Scale(p, 2)
- p is []Point => S is Point
- 2 is untyped constant => no info
* Constraint type inference
func Scale[S ~[]E, E constraints.Integer](s S, c E) S
type Point []int32
Scale(p, 2)
- S is Point (argument type inference)
- S is defined in terms of E => we can infer E
- E is int32
* Different type parameters are different types
func invalid[Tx, Ty Ordered](x Tx, y Ty) Tx {
@ -247,11 +360,6 @@ Use
- Type inference (if applicable) makes function instantiation implicit.
- Instantiation is valid if the type arguments satisfy their constraints.
* How to try?
.link https://go2goplay.golang.org/ - playground
.link https://go.googlesource.com/go/+/refs/heads/dev.go2go/README.go2go.md - dev branch
* Ссылки
.link https://go.googlesource.com/proposal/+/refs/heads/master/design/go2draft-contracts.md - generics design draft

View file

@ -0,0 +1,8 @@
package basic
func min(x, y int) int {
if x < y {
return x
}
return y
}

View file

@ -0,0 +1,10 @@
package generic
import "golang.org/x/exp/constraints"
func min[T constraints.Ordered](x, y T) T {
if x < y {
return x
}
return y
}

View file

@ -0,0 +1,11 @@
package wrong
import "golang.org/x/exp/constraints"
func Scale[S ~[]E, E constraints.Integer](s S, c E) S {
r := make(S, len(s))
for i, v := range s {
r[i] = v * c
}
return r
}

View file

@ -0,0 +1,11 @@
package wrong
import "golang.org/x/exp/constraints"
func Scale[E constraints.Integer](s []E, c E) []E {
r := make([]E, len(s))
for i, v := range s {
r[i] = v * c
}
return r
}